
Multi-Core CPU’s require new development approaches

Robert LeRoy

April 3, 2008

Hardware Advances

Traditionally, the majority of Sogeti’s development efforts have assumed the application would always

execute on a single CPU. The entire computer configuration is seldom taken into our design

considerations; application performance could be increased by upgrading to a faster CPU. In the rare

cases when multiple CPU’s were required, the solution was load balancers; but, the programming logic

wouldn’t change.

Thanks to chip makers Intel and AMD, computers have new multi-core systems; however, designs

continue to be single-threaded applications. Even large-scale web applications are single-threaded and

rely on application servers to manage concurrency.

When you consider that data volumes are increasing dramatically, SOA is everywhere and mash-ups

rule the web, these are all reasons to build parallelism in our applications. The future, specifically cloud

computing, promises to make this an even bigger issue.

To put this into perspective, I recently found that Microsoft released a .Net toolkit called ParallelFX.

This package simplifies the process of leveraging the full capacity of a system without having to write

custom thread management. I used this framework to explore how it affects performance.

Puzzling Vacation

On a recent family vacation, my sister brought a puzzle

with only nine squares. Along the four edges of each

square is a head or tail of a dog. To complete the puzzle,

you have to match the heads and tails of all the dogs. I

spent hours and hours on this and couldn’t solve the

puzzle. So, being a technical person who likes to tinker, I

wrote a program.

Nine tiles factors out to over 380,000 permutations. Each

permutation had to run nine nested loops of four steps

which totals 292,000 calculations. That’s 99 billion

combinations. An excellent test for parallelism!

This is a great example because each permutation can be

executed independently. Large result sets from a database can also be processed in parallel. Likewise,

if running a mash up, it makes sense to execute all the calls in parallel. Although the true benefit in

mash ups may be questionable due to latency and other network traffic.

Parallel Solution

To complete this example in a manageable time frame, I only ran 10,000 permutations. It took my Dell

D820 laptop only two minutes to execute them all in Parallel. Note that task manager shows both

CPU’s running at full capacity.

After switching the logic to a traditional single-threaded loop, it took over four minutes to complete the

same amount of work. Task manager shows that the computer was running at 51% capacity.

That’s an increase of nearly 100% so the overhead from the ParallelFX is minimal. If the computer had

more processors, it would have taken advantage of them and reduced the duration further. As

manufacturers continue to add multiple cores to CPU’s and multiple CPU’s to servers, the benefit of

this model increases rapidly.

Below is a snippet of the actual code. The key to focus on is the “Parallel.For” statement highlighted in

Red. Within ParallelFX, there are multiple implementations of the ‘For’ method and also ‘While’ and

‘Foreach’ implementations. By uncommenting the ‘for’ statement, we can run the same logic in a

single-threaded model.

private void SolvePuzzle()

{

 compute permutations

 int count = combsPuzzle.Count;

 //for (int t = 0; t < count; t++)

 Parallel.For(0, count, delegate(int t)

 {

 loop variable declarations

 int[,] currSet = (int[,])combsPuzzle[t];

 for (int t1 = 0; t1 < 4; t1++)

 {

 a3 = currSet[0,(2 + t1) % 4];

 for (int t2 = 0; t2 < 4; t2++)

 {

 b1 = currSet[1,(0 + t2) % 4];

 for (int t3 = 0; t3 < 4; t3++)

 {

 c1 = currSet[2,(0 + t3) % 4];

 for (int t4 = 0; t4 < 4; t4++)

 {

 d2 = currSet[3,(1 + t4) % 4];

 for (int t5 = 0; t5 < 4; t5++)

 {

 e1 = currSet[4,(0 + t5) % 4];

 for (int t6 = 0; t6 < 4; t6++)

 {

 f1 = currSet[5,(0 + t6) % 4];

 for (int t7 = 0; t7 < 4; t7++)

 {

 g2 = currSet[6,(1 + t7) % 4];

 for (int t8 = 0; t8 < 4; t8++)

 {

 h1 = currSet[7,(0 + t8) % 4];

 for (int t9 = 0; t9 < 4; t9++)

 {

 i1 = currSet[8,(0 + t9) % 4];

 if (CheckSolved())

 {

 Boolean solved = true;

 }}}}}}}}}}}

);

}

Conclusion

This example is written in .Net, but there are many multi-threading design patterns that can be

leveraged. Most involve a manager thread that assigns tasks to worker threads. For more information,

search the internet for “thread design patterns”. There are many, many articles written on this topic.

Clients expect “thought leadership” and this is another way to demonstrate capability. The best way to

take full advantage of powerful, multi-core systems is by writing multi-threaded applications. I

encourage everyone to apply these concepts to their development.

